Transformations and Hardy-Krause Variation

نویسندگان

  • Kinjal Basu
  • Art B. Owen
چکیده

Using a multivariable Faa di Bruno formula we give conditions on transformations τ : [0, 1] → X where X is a closed and bounded subset of R such that f ◦ τ is of bounded variation in the sense of Hardy and Krause for all f ∈ C(X ). We give similar conditions for f◦τ to be smooth enough for scrambled net sampling to attain O(n−3/2+ ) accuracy. Some popular symmetric transformations to the simplex and sphere are shown to satisfy neither condition. Some other transformations due to Fang and Wang (1993) satisfy the first but not the second condition. We provide transformations for the simplex that makes f ◦ τ smooth enough to fully benefit from scrambled net sampling for all f in a class of generalized polynomials. We also find sufficient conditions for conditional inversion in R and for importance sampling to be of bounded variation in the sense of Hardy and Krause.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A generalization of Hoeffding’s lemma, and a new class of covariance inequalities

MSC: primary 62H05 60E15 secondary 62M10 a b s t r a c t We generalize Hoeffding's lemma to apply to covariances between functions of several random variables. Our generalization leads to a new class of covariance inequalities involving the Vitali or Hardy–Krause variation. These inequalities are relevant to the study of weakly dependent processes. Published by Elsevier B.V.

متن کامل

Covering numbers, dyadic chaining and discrepancy

is called the star-discrepancy of (z1, . . . , zN ). Here and in the sequel λ denotes the sdimensional Lebesgue measure. The Koksma-Hlawka inequality states that the difference between the integral of a function f over the s-dimensional unit cube and the arithmetic mean of the function values f(z1), . . . , f(zN ) is bounded by the product of the total variation of f (in the sense of Hardy and ...

متن کامل

How Many Distribution Functions Are There? Bracketing Entropy Bounds for High Dimensional Distribution Functions

This means that every F ∈ Fd satisfies: (i) (non-negativity). For finite intervals I = (a1, b1] × · · · × (ad, bd] ≡ (a, b], with a, b ∈ Rd, F (I) = ∆dF (a, b] ≥ 0 where ∆d denotes the d−dimensional difference operator. (ii) (continuity from above). If y ↓ x, then F (y) ↓ F (x). (iii) (normalization). If x1∧. . .∧xd → −∞, then F (x) → 0; if x1∧. . .∧xd → +∞, then F (x) → 1. (See Billingsley [4]...

متن کامل

QMC integration of improper integrals1

In financial applications of QMC methods, often integrals appear with a singular integrand on the integration boundary. As the variation in the sense of Hardy and Krause is not bounded for such functions, one has to use other theorems than the Koksma-Hlawka inequality to show convergence of QMC methods and estimate the convergence rate. Recently, a lot of research effort has been spent on this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 54  شماره 

صفحات  -

تاریخ انتشار 2016